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Abstract

We show that with every separable classical Stäckel system of Benenti type on a Riemannian space one can associate, by a
proper deformation of the metric tensor, a multi-parameter family of non-Hamiltonian systems on the same space, sharing the
same trajectories and related to the seed system by appropriate reciprocal transformations. These systems are known as bi-cofactor
systems and are integrable in quadratures as the seed Hamiltonian system is. We show that with each class of bi-cofactor systems
a pair of separation curves can be related. We also investigate the conditions under which a given flat bi-cofactor system can be
deformed to a family of geodesically equivalent flat bi-cofactor systems.
c© 2007 Elsevier B.V. All rights reserved.

MSC: 70H06; 70H20; 37J35; 14H70

1. Introduction

A significant progress in the geometric separability theory for the classical Hamiltonian systems separable by
Hamilton–Jacobi method has been achieved in recent years (see for example [1–4]). Among other things a new
class of non-Hamiltonian–Newton systems was introduced [5,6]. These systems were shown to have very interesting
geometric properties when considered as systems on Riemannian spaces [7,8] (see also [9]). In [10] we showed that
they can be separated by the Hamilton–Jacobi method after certain reparametrization of the evolution parameter (see
also [11]). Originally these systems were called quasi-Lagrangian systems. In the present literature they are called
bi-cofactor systems or cofactor-pair systems. In [12] it was further shown that each bi-cofactor system is geodesically
equivalent (in the classical sense of Levi-Civita [13]) to some separable Lagrangian system which means that it has the
same trajectories on the underlying configuration manifold as the Lagrangian system only traversed with a different
speed and moreover that the metric tensors associated with both systems are equivalent i.e. have the same geodesics
(considered as unparametrized curves). In the same paper one can also find a thorough geometric theory of bi-cofactor
systems on an arbitrary pseudo-Riemannian space.

In the present paper we demonstrate on the level of differential equations the geodesic equivalence properties
of cofactor and bi-cofactor systems expressed by an appropriate class of reciprocal transformations (for definition
and properties of reciprocal transformations for finite-dimensional integrable systems see [14]). We clarify and
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systematize their bi-quasi-Hamiltonian formulation on the phase space. We show explicitly that a bi-cofactor system
is geodesically equivalent to two different separable Hamiltonian systems of Benenti type and we show explicitly
the transformation between all geometric structures associated with these two Benenti systems and the original bi-
cofactor system. We further demonstrate that with each bi-cofactor system one can relate two different separation
curves and we find a map between these curves. From this point of view we therefore show that with each pair of
separation curves that are related through the above-mentioned map we can associate a whole class of geodesically
equivalent bi-cofactor systems. Every such class contains at least two separable Hamiltonian systems and on the phase
space all the members of a given class are related by a composition of an appropriate noncanonical transformation
and a reciprocal transformation. Further, we investigate geodesically equivalent families of flat (in the sense of
the underlying metric tensor) cofactor systems and find a sufficient condition for a so-called J -tensor to generate
from any given flat bi-cofactor system a multi-parameter family of flat bi-cofactor systems. Finally, we illustrate our
considerations by presenting a thorough example of the class of separable bi-cofactor systems geodesically equivalent
to the Henon–Heiles system and then specify this example to the flat case.

2. Cofactor systems

Let us consider the following Newton system

d2q i

dt2 + Γ i
jk

dq j

dt

dqk

dt
= F i , i = 1, . . . , n, (1)

where q i are some coordinates on an n-dimensional pseudo-Riemannian manifold Q endowed with a metric tensor
g = (gi j ) and where F = (F i ) is a vector field on Q representing the force which we assume to be time- and
velocity-independent. Here and in what follows we use the Einstein summation convention if not stated otherwise.
The functions Γ i

jk are the Christoffel symbols of the Levi-Civita connection associated with the metric tensor g and if

all Γ i
jk are zero we call the system (1) a flat Newton system. In case that F = 0 (1) is the equation of geodesic motion

on Q and the variable t becomes an affine parameter of geodesic lines.
If the force F is conservative (potential) i.e. if

F = −∇V = −GdV, (2)

where G = g−1 is the contravariant form of the metric tensor g and where V = V (q) is a potential function, then (1)
is equivalent to the Lagrangian system

d
dt

∂L
∂vi −

∂L
∂q i = 0, vi

=
d
dt

q i , i = 1, . . . , n (3)

on the tangent bundle TQ endowed with coordinates (q, v) = (q1, . . . qn, v1, . . . , vn), whereL =
1
2 gi j (q)viv j

−V (q)

is a Lagrangian of the system. By the Legendre map pi = gi jv
j , the system (3) is transformed to the Hamiltonian

dynamical system

d
dt

(
q
p

)
=

(
0 I

−I 0

)
∂ H

∂q
∂ H

∂p

 = Πc dH (4)

on the cotangent bundle T ∗Q endowed with coordinates (q, p) = (q i , p j ) where H =
1
2 Gi j (q)pi p j + V (q) is the

Hamiltonian of the system, Πc is the canonical Poisson tensor and dH is the differential of H .
We will now remind the notion of a J -tensor.

Definition 1. A (1, 1)-tensor J = (J i
j ) on Q is called a J -tensor associated with the metric g or G = g−1 (we

often write that J is a JG-tensor when emphasizing the underlying metric) if its contravariant form J i j
= J i

k Gk j is a
symmetric (2, 0)-tensor and if J itself satisfies the following characteristic equation

∇h J i
j =

(
α jδ

i
h + αi g jh

)
, (5)

where ∇h is the covariant derivative associated with the metric g and where αi is some 1-form.
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From (5) it follows that the Nijenhuis torsion of J vanishes:

J h
[i ∇|h| J k

j] − J k
l ∇[i J l

j] = 0

(the square brackets denote skew-symmetric permutations of indices i, j; the index h is not permuted) and that J is
a conformal Killing tensor of trace type which means that Ji j = J k

i gk j satisfies the relation ∇(h Ji j) = α(h gi j) with
αi = ∂i tr J (the brackets denote symmetric permutations of indices h, i, j).

Remark 2. All J -tensors of a given metric tensor g constitute an R-linear vector space of dimension less than or
equal to 1

2 (n + 1)(n + 2). This space attains its maximum dimension for metrics of constant curvature. In case the
metric g is pseudo-Euclidean so that g = diag (ε1, . . . , εn) with εi = ±1 in its Cartesian coordinates, the general
form of J in these coordinates is [12]

J i j
= mq i q j

+ β i q j
+ β j q i

+ γ i j , (6)

where m, β i and γ i j
= γ j i are 1

2 (n + 1)(n + 2) independent constants and J i j
= J i

k Gk j is the contravariant form of
J.

If a J -tensor J has n real and simple eigenvalues then it is called L-tensor and its signed eigenvalues (λ1, . . . , λn)

given by det (J + λ(q)I ) = 0 define a coordinate web on Q. Such webs will turn out to be separation webs for our
systems (see below). See [12] for further details on J -tensors and L-tensors.

The system (1) is called cofactor if the force F has the following form

F = − (cof J)−1
∇V (7)

for some J -tensor J, where cof J is the cofactor matrix of J (i.e. the transposed matrix of signed minors of J) so that
J cof J = (cof J) J = (det J) I or in case that J is invertible cof J = (det J) J−1. In the case J = I the system (7)
becomes Lagrangian (potential).

In our further considerations the notion of equivalent metric tensors will play an important role. Two metric tensors
G and G on manifold Q are said to be equivalent if their geodesics locally coincide as unparametrized curves. As it
was shown in [12], a metric G admits an equivalent metric G if and only if it admits a nonsingular J -tensor J. In such

a case G
i j

= σ J i
k Gk j

= σ J i j or in the matrix form

G = σJG

with σ = det J =
dt
dt where t and t are affine parameters associated with the (parametrized) geodesic of G and G

respectively. Moreover, J−1 is a J -tensor for the new metric G.
Two dynamical systems (g, F) and (g, F) of the form (1) on Q are said to be equivalent if their trajectories coincide

up to a reparametrization of the evolution parameter. Moreover, they are called geodesically equivalent if also metrics
g and g are equivalent. As it was proved in [12] two systems (g, F) and (g, F) are geodesically equivalent if and only
if the metric g admits a nonsingular J -tensor J such that

G
i j

= σ J i
k Gk j , F = σ 2 F, σ = det J.

Also in this case the evolution parameters t and t of the systems (g, F) and (g, F) are related through the above-
mentioned reciprocal transformation

dt

dt
= σ.

We will now show that every cofactor system belongs to a whole class of geodesically equivalent cofactor systems.

Theorem 3. Consider the cofactor system

d2q i

dt2 + Γ i
jk

dq j

dt

dqk

dt
= −

(
(cof J)−1

∇V
)i

, i = 1, . . . , n. (8)
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Assume that J1 is another J -tensor for the metric G and denote by G1 = σ1J1G (with σ1 = det J1) a new metric
tensor equivalent to G. In a new independent variable t1 defined through the reciprocal transformation

dt1 =
dt

σ1

the cofactor system (8) attains the form

d2q i

dt 2
1

+ (Γ (1))i
jk

dq j

dt1

dqk

dt1
= −

([
cof

(
J J−1

1

)]−1
∇

(1)V

)i

, i = 1, . . . , n, (9)

where (Γ (1))i
jk are Christoffel symbols of the metric G1 and ∇

(1)
= G1d is the gradient operator associated with the

metric G1.

Proof. Since dt1 = dt/σ1 we have, by the chain rule,

dq i

dt
=

1
σ1

dq i

dt1
,

d2q i

dt2 =
1

σ 2
1

d2q i

dt2
1

−
1

σ 3
1

dq i

dt1

∂σ1

∂ql

dql

dt1
.

Moreover (see for example [15]) the Christoffel symbols of G and G1 are related by

Γ i
jk = (Γ (1))i

jk +
1

2σ1

(
δi

j
∂σ1

∂qk
+ δi

k
∂σ1

∂q j

)
. (10)

Further

∇
(1)V = G1dV = σ1J1GdV = σ1J1∇V,

so that

(cof J)−1
∇V =

1
σ1

(cof J)−1 J−1
1 ∇

(1)V =
1

σ 2
1

(cof J)−1 cof J1∇
(1)V

=
1

σ 2
1

cof (J−1)cof J1∇
(1)V =

1

σ 2
1

cof (J1J−1)∇(1)V

=
1

σ 2
1

(
cof

(
J J−1

1

)−1
)

∇
(1)V .

Plugging all this into (8) we obtain (9). �

Remark 4. The tensor J J−1
1 is a JG1 -tensor i.e. a J -tensor for the metric G1. It means that the system (9) is a cofactor

system geodesically equivalent to (8) with G1 as the underlying metric.

Note that in the particular case J1 = J the system (9) becomes potential

d2q i

dt2 + Γ
i
jk

dq j

dt

dqk

dt
= −

(
∇V

)i
, i = 1, . . . , n (11)

with the affine parameter

dt1 = dt =
dt

σ

and with Γ
i
jk and ∇ = Gd defined by the new metric G = σJG with σ = det(J). This shows that every cofactor

system is geodesically equivalent (in the sense of the definition above) to a potential system. This fact yields us a
possibility of determining a quasi-Hamiltonian formulation for the cofactor system (8).

Proposition 5. The cofactor system (8) has on T ∗Q the following quasi-Hamiltonian representation:

d
dt

(
q
p

)
=

1
σ

ΠncdH (12)
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with the noncanonical Poisson operator

Πnc =

(
0 J

−JT Ω

)
, Ω i

j =

(
∂ J k

i

∂q j −
∂ J k

j

∂q i

)
pk

and with the Hamiltonian

H(q, p) =
1
2

pT(cof J)Gp + V (q). (13)

Proof. The systems (8) and (11) are related by the reciprocal transformation dt = dt/σ with σ = σ(q) yielding that
dq i/dt = σdq i/dt . Let us thus introduce new variables on TQ:

q = q, v = σv. (14)

The Lagrangian of (11) written in coordinates (q, v) is:

L =
1
2

gi j (q)viv j
− V (q)

This Lagrangian defines a new Legendre map from TQ to T ∗Q that is just the fiberwise isomorphism between TQ and
T ∗Q induced by the new metric g i.e. p = g v. From G = σJG we have

g = G
−1

=
1
σ

gJ−1
=

1
σ

(JT)−1g

so that

p = g v =
1
σ

(JT)−1gσv = (JT)−1gv = (JT)−1 p.

Thus, the map (14) on TQ induces the following noncanonical map on T ∗Q:

q = q, p =

(
JT
)−1

p. (15)

In the coordinates (q, p) the system (11) has the following canonical Hamiltonian representation (cf (4)):

d
dt

(
q
p

)
= Π cdH , (16)

with the usual Hamiltonian H =
1
2 pT G p + V (q). In order to obtain the quasi-Hamiltonian form (12) of (8) it is

enough to transform the system (16) back to the variables (q, p, t). The map between these variables is

q = q, p =

(
JT
)−1

p, dt =
dt

σ
(17)

or equivalently

q = q, p = JT p, dt = σdt . (18)

Note that this map consists of a “space” part (11) that involves only (q, p) and (q, p) variables followed by the
reciprocal transformation (reparametrization of evolution parameter) dt = dt/σ . By using that d/dt = σd/dt (which
generates the factor 1/σ in (12)) and after some calculations that exploit the fact that J is torsion-free, we obtain (12)
with H denoting the function H written in (q, p)-coordinates. Since

pT G p = pTJ−1σJG(JT)−1 p = pTσJ−1Gp = pTcof (J)Gp

we get that H is of the form (13). �
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3. Bi-cofactor systems

The system of Newton equations of the form

d2q i

dt2 + Γ i
jk

dq j

dt

dqk

dt
= −

(
(cof J1)

−1
∇V

)i
= −

(
(cof J2)

−1
∇W

)i
(19)

with two independent JG-tensors J1 and J2 and with two different potentials V and W is called a bi-cofactor system
on Q. It means that the force F has two different cofactor representations of the form (7). The following is a simple
corollary of Theorem 3.

Proposition 6. Assume that the metric G has a third J -tensor J3 and denote by G3 = σ3J3G (with σ3 = det J3) a
new metric tensor equivalent to G. In the new independent variable t3 defined through

dt3 =
dt

σ3
(20)

the bi-cofactor system (19) attains the form

d2q i

dt 2
3

+ (Γ (3))i
jk

dq j

dt3

dqk

dt3
= −

([
cof

(
J1 J−1

3

)]−1
∇

(3)V

)i

= −

([
cof

(
J2 J−1

3

)]−1
∇

(3)W

)i

, (21)

where (Γ (3))i
jk are Christoffel symbols of the metric G3 and ∇

(3)
= G3d.

As before, both the tensor J1 J−1
3 and J2 J−1

3 are JG3 -tensors so that G3 is the underlying metric of the system (21).
In case that J3 = J1 the system (21) attains the potential-cofactor form

d2q i

dt2 + Γ
i
jk

dq j

dt

dqk

dt
= −

(
∇V

)i
= −

((
cof J

)−1
∇W

)i
(22)

with the affine parameter dt = dt/σ and with J = J2 J−1
1 being a JG-tensor for the new metric G = σJ1G with

σ = det(J1) = σ1.
If J3 = J2 then the system (21) attains the cofactor-potential form

d2q i

d̃t2 + Γ̃ i
jk

dq j

d̃t

dqk

d̃t
= −

((
cof J̃

)−1
∇̃V

)i
= −

(
∇̃W

)i
(23)

with the affine parameter d̃t = dt/σ̃ and with J̃ = J1 J−1
2 = J

−1
being a JG̃-tensor for the new metric G̃ = σ̃J2G

with σ̃ = det(J2) = σ2.

Proposition 7. The bi-cofactor system (19) has on T ∗Q the following bi-quasi-Hamiltonian representation:

d
dt

(
q
p

)
=

1
σ1

Πnc(J1)dH =
1
σ2

Πnc(J2)dF, (24)

with two compatible noncanonical Poisson operators Πnc(J1) and Πnc(J2) given by

Πnc(J) =

(
0 J

−JT Ω

)
, Ω i

j =

(
∂ J k

i

∂q j −
∂ J k

j

∂q i

)
pk

and with the Hamiltonians

H =
1
2

pT(cof J1)Gp + V (q), F =
1
2

pT(cof J2)Gp + W (q).
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The representation (24) follows directly from Proposition 5 applied independently to both cofactor representations
of (19). The fact that the operators Πnc(J1) and Πnc(J2) are compatible (i.e. that any linear combination η1Πnc(J1) +

η2Πnc(J2) is Poisson) is shown below. In the particular case of potential-cofactor systems (22) and (23) this
proposition yields their well-known quasi-bi-Hamiltonian representation [16,17].

Theorem 8. 1. The system (24) has n constants of motion

Hr = Er + Vr (q) =
1
2

pT Kr Gp + Vr (q), r = 1, . . . , n, (25)

(with H = H1 and F = Hn) where Kr are (1, 1)-Killing tensors (for the metric G) defined by

cof (J2+ξJ1) =

n−1∑
i=0

Kn−iξ
i (26)

(so that K1 = cof J1, Kn = cof J2) and where the potentials Vr can be obtained from two equivalent formulas

∇Vr =
1
σ1

Kr J1∇V1 or ∇Vr =
1
σ2

Kr J2∇Vn, V = V1, W = Vn . (27)

2. The constants Hr are in involution with respect to both operators Πnc(J1) and Πnc(J2):

{Hr , Hs}Πnc(J1)
= {Hr , Hs}Πnc(J2)

= 0 for all r, s = 1, . . . , n.

To prove this theorem, we will first need

Proposition 9. In the variables (q, p, t) related with (q, p, t) through the map

q = q, p =

(
JT

1

)−1
p, dt =

dt

σ1
(28)

the system (24) attains the quasi-bi-Hamiltonian form

d
dt

(
q
p

)
= Π cdH =

1

det(J)
Π nc(J)dF, (29)

with H = H and F = F (as functions on T ∗Q) and with

Π c = Πnc(J1), Π nc(J) = Πnc(J2) (30)

(as tensors on T ∗Q). Moreover, the tensor Π c is canonical in (q, p)-variables. Similarly, in the variables (̃q, p̃, t̃)
defined by

q̃ = q, p̃ =

(
JT

2

)−1
p, d̃t =

dt

σ2
. (31)

(24) attains the form

d
d̃t

(
q̃
p̃

)
=

1

det(̃J)
Π̃nc (̃J)dH̃ = Π̃cdF̃, (32)

with H̃ = H and F̃ = F (as functions on T ∗Q) and with

Π̃c = Πnc(J2), Π̃nc (̃J) = Πnc(J1) (33)

(again considered as tensors on T ∗Q) so that

Π̃c = Π nc(J), Π c = Π̃nc (̃J).

Again, the tensor Π̃c is canonical in (̃q, p̃)-variables.

This proposition can be proved either by direct calculation or by observing that the underlying bi-cofactor system
(19) has in the variables (q, t) the potential-cofactor form (22) and in the variables (̃q, t̃) the cofactor-potential form
(23) and using arguments similar to those used in the proof of Proposition 5.
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Proof (of Theorem 8). By Proposition 9, the system (24) has in variables (q, p, t) the form (29) so that it is a so-
called Benenti system and therefore (see [3]) Π c = Πnc(J1), Π nc(J) = Πnc(J2) are compatible and the system has n
constants of motion of the form

H r = Er + V r (q) =
1
2

pT K r G p + V r (q), r = 1, . . . , n, (34)

with G = σ1J1G and where the Killing tensors K r of the metric G are determined by the expansion

cof
(
J+ξ I

)
=

n−1∑
i=0

K n−iξ
i (35)

(so that K 1 = I, Kn = cof J) while V r are separable potentials satisfying

K r∇ V 1 = ∇ V r . (36)

On the other hand,

cof
(
J+ξ I

)
= cof

(
J2J−1

1 +ξ I
)

= cof (J1)
−1cof (J2+ξJ1) = K −1

1

n−1∑
i=0

Kn−iξ
i ,

so that by comparing with (35) we obtain

K i = K −1
1 Ki , i = 1, . . . , n (37)

and

Er =
1
2

pT K r G p =
1
2

pTJ−1
1 K −1

1 Krσ1J1G
(

J−1
)T

p = Er .

The last equality follows from J−1
1 K −1

1 = σ1 I and J1G
(
J−1)T

= J1J−1G = G, so that indeed Er = Er if we define
Ki as in (26). Thus, if we put Vr = V r we obtain that H r = Hr (as functions on T ∗Q). Now, substituting (37) into
(36) we get

K −1
1 Krσ1 J1∇V1 = σ1 J1∇Vr or Kr J1∇V1 = K1 J1∇Vr

which yields the first formula in (27). Naturally, the functions Hr Poisson-commute with respect to both Poisson
tensors Πnc(Ji ) in (24) since H r = Hr Poisson-commute with respect to both Poisson tensors Π c,Π nc(J) in (29) and
since these tensors are just Πnc(Ji ) written in the variables (q, p), according to (30). That proves all the statements in
Theorem 8 except the second formula in (27). Consider now the system (32). It is also a Benenti system so it also has
n constants of motion of the form

H̃r = Ẽr + Ṽr (̃q) =
1
2

p̃T K̃r G̃ p̃ + Ṽr (̃q), r = 1, . . . , n, (38)

(with G̃ = σ2J2G and with H̃ = H̃n, F̃ = H̃1) where the Killing tensors K̃r of the metric G̃ are determined by

cof
(̃
J+ξ I

)
=

n−1∑
i=0

K̃n−iξ
i

(so that K̃1 = I , K̃n = cof J̃) while Ṽr are separable potentials satisfying

K̃r ∇̃V1 = ∇̃ Ṽr . (39)

Repeating the procedure above we obtain an equivalent proof of Theorem 8. However, this time we get

n−1∑
i=0

K̃n−iξ
i

= cof
(̃
J+ξ I

)
= cof (J1J−1

2 + ξ I ) = K −1
n cof (J1 + ξJ2)

= K −1
n ξn−1

n−1∑
i=0

Kn−iξ
−i

= K −1
n

n−1∑
i=0

Kn−iξ
n−i−1,
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which gives

K̃i = K −1
n Kn−i+1, i = 1, . . . , n. (40)

This also yields Ẽi = En−i+1 and thus Ṽi = Vn−i+1, H̃i = Hn−i+1 = Hn−i+1 for all i = 1, . . . , n. By transforming
the formula (39) to (q, p)-coordinates (similarly as we did for bar-coordinates) we obtain the second formula in (27).
Finally, the functions Ki defined by (26) must be (1, 1)-Killing tensors for G since cof(J2+ξJ1) is a (1, 1)-Killing
tensor for any value of the parameter ξ and since Killing tensors of G constitute a vector space. �

Note also that the direct map between variables (q, p, t) and (̃q, p̃, t̃) is obtained by composing the map (28) with
the map (31). It attains the form

q̃ = q, p̃ =

(
J

T
)−1

p, d̃t =
dt

det(J)
or q = q̃, p =

(̃
J

T
)−1

p̃, dt =
d̃t

det(̃J)
. (41)

Further, by comparing (37) and (40) we obtain

K̃i = K
−1
n K n−i+1.

In the remaining part of this chapter will shortly discuss how the two equivalent systems (29) and (32) can be
embedded in quasi-bi-Hamiltonian chains and discuss the relation between these chains.

Since the system (29) has n commuting with respect to both operators Π c and Π nc integrals of motion H r it
belongs to the set of n commuting Hamiltonian vector fields

d
dtr

(
q
p

)
= Π c dH r ≡ Xr , r = 1, . . . , n, (42)

(where dt1 = dt = dt/ det(J1)) and the system (29) itself defines the first vector field X1. Similarly, since the system
(32) has n commuting with respect to both Π̃c and Π̃nc integrals of motion H̃r it belongs to the set of n commuting
Hamiltonian vector fields

d
d̃tr

(
q̃
p̃

)
= Π̃c dH̃r ≡ X̃r , r = 1, . . . , n, (43)

(where d̃t1 = d̃t = dt/ det(J2) so that d̃t1 = dt1/ det(J)) and it also is the first vector field X̃1. By the above
construction, the vector fields X1 and X̃1 are parallel

X̃1 = det(J) X1 or X1 = det(̃J) X̃1

which once again reflects the geodesic equivalence of the systems (22) and (23) on Q.
Moreover, vector fields (42) belong to the following quasi-bi-Hamiltonian chain:

X1 = Π c dH1 =
1
ρn

Π nc(J)dHn

Xr = Π c dH r =
ρr−1

ρn
Π nc(J)dHn − Π nc(J)dH r−1, r = 2, . . . , n,

where the functions ρr are defined through the polynomial expansion of det(J + ξ I ):

det(J + ξ I ) =

n∑
i=0

ρiξ
n−i

(so that ρn = det J). Similarly, vector fields (43) belong to a similar quasi-bi-Hamiltonian chain:

X̃1 = Π̃c dH̃1 =
1
ρ̃n

Π̃nc (̃J)dHn

X̃r = Π̃c dH̃r =
ρ̃r−1

ρ̃n
Π̃nc (̃J)dH̃n − Π̃nc (̃J)dH̃r−1, r = 2, . . . , n,
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where ρ̃r are defined through

det(̃J + ξ I ) =

n∑
i=0

ρ̃iξ
n−i

(so that ρ̃n = det J̃). Since J̃ = J
−1

we have that ρr and ρ̃r are related via

ρ̃r =
ρn−r

ρn
or ρr =

ρ̃n−r

ρ̃n
.

Comparing both chains we obtain that the vector fields Xr and X̃r are related through

X̃1 = ρn X1, X̃ i = ρn−i+1 X1 − Xn−i+2, i = 2, . . . , n.

4. Flat bi-cofactor systems

Let us recall that a pseudo-Riemannian space is called the space of constant curvature if the curvature tensor Ri jkl
has the form

Ri jkl = K
(
g jl gik − g jk gil

)
(44)

for some scalar function K . By Bianchi identity it follows then that K is a constant, related to scalar (Ricci) curvature
~ = Rik gik through ~ = K n(n − 1). Thus, for such spaces the condition ~ = 0 or K = 0 implies that the Riemann
tensor Ri jkl is zero i.e. that the metric g is flat.

Suppose now that g is a metric of constant curvature and that g is another metric tensor obtained by deforming g
through

G = σJG (45)

(with J being a JG-tensor J and with σ = det J). Then, by the classical result of Beltrami [18] we know that g is also
of constant curvature. Moreover, for two metrics g and g that are geodesically equivalent and of constant curvature
their scalar curvatures ~ and ~ are related by the formula

~ gi j = ~gi j − ∇i f j + fi f j (46)

(see [15] p. 293) where the covector fi is defined as

fi =
1

2(n + 1)

∂

∂qi

(
ln

det g

det g

)
. (47)

A simple calculation shows that for our choice of g, g we have

fi = −
1

n + 1
σi where σi =

1
σ

∂σ

∂qi
.

Substituting this into (46) and performing contraction with G we obtain

~ =
σ

n

[
~tr J +

1
n + 1

J i j
(

σiσ j +
1

n + 1
∇iσ j

)]
.

(the summation convention applies as usual). Thus, we see that if ~ = 0 then a sufficient condition for ~ to be zero is

J i j
(

σiσ j +
1

n + 1
∇iσ j

)
= 0. (48)

Let us now assume that the metric G of the system (19) is flat (i.e. ~ = 0) so that in some coordinate system (q i ) it
assumes the form

G = diag (ε1, . . . , εn) with εi = ±1. (49)
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(note that then g = G−1
= diag (ε1, . . . , εn) in this particular coordinate system too while Γ i

jk = 0). Suppose now
that we want to “deform” this system as in Proposition 6 by introducing the new independent variable dt3 = dt/σ
where σ = det J for some new JG-tensor J but in such a way that the resulting equivalent metric G = σJG is also
flat so that the geodesically equivalent system (21) is a flat Newton system (in this section we will use J, σ and G
instead of J3, det J3 and G3 to shorten the notation). A sufficient condition for doing this is to take J that satisfies (48).
In the Cartesian (with respect to g) coordinates (q i ) the contravariant form of the tensor J is given by (6). However,
by Theorem B.4.3 in [12] we know that m = 0 or else ~ 6= 0. Thus, our aim is to find a more explicit form of the
condition (48) for J given by (6) with m = 0.

Let us for the moment denote the (2, 0)-form of J as given in (6) by Jc (J-contravariant) so that Jc = JG or
J = Jcg. We have then

Theorem 10. Assume that G is of the form (49) and that J is a JG-tensor such that its contravariant form Jc is given
by (6). Then for the metric G = σJG to be flat it is sufficient that m = 0 and

βTg (cof J) β = 0 or βT (cof Jc) β = 0. (50)

Proof. Both conditions in (50) are equivalent since cof Jc = cof (JG) = cof G cof J = det(G) g cof J. We have to
show that the condition (48) in our setting attains the form (50). Since J is torsionless it satisfies the identity

σ
∂ (tr J)

∂q i = Jh
i

∂σ

∂qh ,

or in the matrix form

σd(tr J) = JTdσ. (51)

Since J i
j = J ik gk j = β iε j q j

+ β jε j q i
+ γ i jε j (no summation) we have tr (J) = J i

i = 2β iεi q i
+ γ i iεi so that

d(tr J) = (ε1β
1, . . . , εnβn)T. Thus, (51) reads

dσ = 2 (cof J)T gβ = 2g (cof J) β. (52)

Therefore

σi J i jσ j =
1

σ 2

∂σ

∂q i J i j ∂σ

∂q j =
1

σ 2 (dσ)T J dσ =
4

σ 2 βTg (cof J) β. (53)

Further

J i j
∇iσ j = J i j ∂

∂q i

(
1
σ

∂σ

∂q j

)
= −σi J i jσ j +

1
σ

J i j ∂2σ

∂q i∂q j .

But, using (52) twice and (49) we obtain

J i j ∂2σ

∂q i∂q j = J i j ∂

∂q i

(
∂σ

∂q j

)
= 2J i j g jk

∂

∂q i (cof J)k
s βs

= 2J i
k

∂

∂q i (cof J)k
s βs

= 2
[

∂

∂q i

(
J i

k (cof J)k
s

)
− (cof J)k

s
∂

∂q i J i
k

]
βs

= 2
∂σ

∂q i β
i
− 2(n + 1)βkεk (cof J)k

s βs

= 4βTg (cof J) β − 2(n + 1)βTg (cof J) β

so that

J i j ∂2σ

∂q i∂q j = 2(1 − n)βT g(cof J) β.

Thus,

J i j
∇iσ j = −

2
σ

(1 + n)βT g(cof J) β. (54)

Plugging (53) and (54) into (48) we immediately obtain (50). �
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Therefore, we have showed that for any flat bi-cofactor system (19) there exists a multi-parameter family (with
1
2 n(n + 3) − 1 parameters) of geodesically equivalent (but algebraically very different) flat bi-cofactor systems.

Remark 11. The condition (50) can be written as

βTg (cof γ g) β = 0 or βT (cof γ ) β = 0. (55)

5. Separation curves for bi-cofactor systems

A system of n algebraic equations of the form

ϕi (λ
i , µi ; a1, . . . , an) = 0, i = 1, . . . , n, det

[
∂ϕi

∂a j

]
6= 0, (56)

each containing only one pair (λi , µi ) of coordinates (λ, µ) on T ∗Q (and with real coefficients ai ) is called separation
relations. The condition in (56) means that we can solve the Eq. (56) with respect to ai obtaining n independent
functions on T ∗Q of the form ai = Hi (λ, µ), i = 1, . . . , n. If the functions Wi (λ

i , a) are solutions of a system of n
decoupled ODE’s

ϕi

(
λi , µi =

dWi (λ
i , a)

dλi , a1, . . . , an

)
= 0, i = 1, . . . , n, (57)

then the function W (λ, a) =
∑n

i=1 Wi (λ
i , a) is a solution of all the Eq. (57) and simultaneously it is an additively

separable solution of all Hamilton–Jacobi equations

Hi

(
λ1, . . . , λn,

∂W

∂λ1 , . . . ,
∂W

∂λn

)
= ai , i = 1, . . . , n (58)

simply because solving (56) to the form ai = Hi (λ, µ) is a purely algebraic operation. The Hamiltonians Hi
Poisson-commute by the classical theorem of Jacobi. The function W (λ, a) is a generating function for the canonical
transformation (λ, µ) → (b, a) to the new set of coordinates that simultaneously linearize all the Hamiltonian
equations

uti = Πc dHi = X Hi , i = 1, . . . , n. (59)

The coordinates (λ, µ) are thus called the separation coordinates for the Hamiltonian systems (59).
In the case that the relations (56) are affine in ai the obtained systems belong to the well-known class of

(generalized) Stäckel separable systems.
Let us now consider a special subclass of Stäckel systems given by the following separation relations:

H1(λ
i )n−1

− H2(λ
i )n−2

+ · · · + (−1)n−1 Hn =
1
2

fi (λ
i )µ2

i + γi (λ
i ), i = 1, . . . , n, (60)

where fi and γi are smooth functions. Such systems are known as Benenti systems. In the particular case that
fi (λ

i ) = f (λi ) and γi (λ
i ) = γ (λi ), separation relations (60) are given by n copies of the so-called separation

curve

H1λ
n−1

− H2λ
n−2

+ · · · + (−1)n−1 Hn =
1
2

f (λ)µ2
+ γ (λ) (61)

so that now λ and µ ∈ R. By solving the system of n copies of this relation (with i th copy containing variables
labelled (λi , µi )) with respect to Hi we find that the Hamiltonians Hi attain the form

Hr = Er + Vr (λ) =
1
2
µT Kr Gµ + Vr (λ), r = 1, . . . , n,

(cf (25)) with the metric tensor

G = diag
(

f (λ1)

∆1
, . . . ,

f (λn)

∆n

)
,
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where ∆i =
∏

j 6=i (λ
i
− λ j ) while the (1, 1)-tensors Kr are generated by the expansion

cof (J+ξ I ) =

n−1∑
i=0

Kn−iξ
i

with the JG-tensor J = diag (λ1, . . . , λn). Thus [20]:

Kr = diag
(

∂ρr

∂λ1 , . . . ,
∂ρr

∂λn

)
,

where the functions ρr can be obtained from

det(J + ξ I ) =

n∑
i=0

ρiξ
n−i .

Coordinate-free expression for Kr is as follows [19]

Kr+1 = ρr I − JKr , r = 0, 1, . . . , n − 1, ρ0 = 1, K0 = 0,

or alternatively

Kr =

r−1∑
k=0

ρk (−J)r−1−k , r = 1, . . . , n.

It is important to stress that in case that eigenvalues of J are not simple the obtained tensors Kr will not be independent
and thus will not generate an integrable system (see also below).

For a particular choice γ (λi ) = (λi )k, k ∈ Z in the separation curve (61) we obtain a family of separable potentials
that can be constructed recursively by [20]

V (k+1)
r = ρr V (k)

1 − V (k)
r+1 with V (0)

r = (−1)n−1δrn . (62)

This recursion can be reversed

V (k−1)
r =

ρr−1

ρn
V (k)

n − V (k)
r−1. (63)

In both cases we put V (k)
r = 0 for r < 0 or r > n. The above recursion can be written in a matrix form as

V (k)(λ) = Rk(λ)V (0), k ∈ Z , (64)

where V (k)(λ) = (V (k)
1 (λ), . . . , V (k)

n (λ))T, V (0)
= (0, . . . , 0, (−1)n−1)T and

R =


ρ1(λ) −1 0 · · · 0
ρ2(λ) 0 −1 · · · 0

...
...

... · · ·
...

ρn−1(λ) 0 0 · · · −1
ρn(λ) 0 0 · · · 0

 . (65)

This recursion is equivalent to (62) and (63) and is invariant with respect to any point change of variables on Q as R
in (65) is expressed by coefficients of the characteristic polynomial of J. The first nontrivial potentials in the positive
hierarchy are V (n)

r (λ) = ρr (λ), while for the negative hierarchy V (−1)
r = ρr−1(λ)/ρn(λ).

Let us now once again consider our systems (22) and (23) and their Hamiltonian formulations (42) and (43)
respectively. From now on we will additionally assume that the tensor J (and hence J̃) has all its eigenvalues real and
simple (i.e. both are the so-called L-tensors [12]). Then the tensors K r (and K̃r likewise) are independent and thus
(42) and (43) are integrable. Moreover, both systems belong to the class of separable (in the sense of Hamilton–Jacobi
theory) systems called Benenti systems. It is known that all Hamiltonian flows in (42) are separable in variables (λ, µ)
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where the new coordinates λ
i

are obtained from the characteristic equation of J:

det(J + λI ) = 0 (66)

(i.e. are (signed) eigenvalues of J) while the corresponding momenta µi are obtained from µ = (Φ′−1)T p where Φ′

is the Jacobi matrix of the map Φ : q → λ given by (66). Similarly, all the flows in (43) are separable in variables
(̃λ, µ̃) where λ̃i are obtained from

det(̃J + λ̃I ) = 0 (67)

with the corresponding momenta µ̃i obtained by µ̃ = (Ψ ′−1)T p̃ where Ψ ′ is the Jacobi matrix of the map Ψ : q → λ̃

given by (67).

Theorem 12. The separation variables (λ, µ) of (42) and the separation variables (̃λ, µ̃) of (43) are related by the
transformation

λ̃i
=

1

λ
i , µ̃i = −λ

i
µi (no summation), i = 1, . . . , n. (68)

Proof. By comparing (66) with (67) we obtain that λ
i
=

1
λ̃i

. The map between momenta µ̃ and µ can be found in the

following way. We know (cf. (28) and (31)) that p =
(
JT

1

)−1
p and p̃ =

(
JT

2

)−1
p which yields p̃ =

(
J

T
)−1

p. Thus

µ̃ = (Ψ ′−1)T p̃ = (Ψ ′−1)T(J
T
)−1Φ′Tµ = Φ′J

−1
(Ψ ′−1)Tµ.

Since λ
i
= 1/̃λi we see that Ψ ′

= ΘΦ′ where

Θ = −diag

(
1

(λ
1
)2

, . . . ,
1

(λ
n
)2

)

so that Ψ ′−1
= −Φ′−1diag

(
(λ

1
)2, . . . , (λ

n
)2
)

. Inserting it in the above formula yields

µ̃ = −

(
Φ′J

−1Φ′−1diag ((λ
1
)2, . . . , (λ

n
)2)
)T

µ.

But Φ′J
−1Φ′−1

= diag (1/λ
1
, . . . , 1/λ

n
) since it is the inverse of the L-tensor J written in its separation coordinates

λ. Inserting it into the above formula we get the map between momenta as in (68). �

According to the remarks above, the Benenti system (29) in variables (λ, µ) has the separation curve

H1λ
n−1

− H2λ
n−2

+ · · · + (−1)n−1 Hn =
1
2

f (λ)µ2
+ γ (λ). (69)

Similarly, the separation curve for the Benenti system (32) is

H̃1̃λ
n−1

− H̃2̃λ
n−2

+ · · · + (−1)n−1 H̃n =
1
2

f̃ (̃λ)µ̃2
+ γ̃ (̃λ). (70)

Applying the map (68) to the separation curve (70), using that H r = H̃n−r+1 and comparing the result with (69) we
obtain

H1λ
n−1

− H2λ
n−2

+ · · · + (−1)n−1 Hn =
(−1)n−1

2
f̃
(
λ

−1
)

λ
n+1

µ2
i + (−1)n−1γ̃ (λ

−1
)λ

n−1
.

Corollary 13. If the functions f , f̃ and γ , γ̃ satisfy the conditions:

f (ξ) = (−1)n−1 f̃
(
ξ−1

)
ξn+1, γ (ξ) = (−1)n−1γ̃ (ξ−1)ξn−1, ξ ∈ R (71)
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then the separation curves (69) and (70) generate two geodesically equivalent systems of Benenti type parametrized

by two different evolution parameters t and t̃ such that d̃t = dt/ det(σ ), where σ = ρn =
∏n

i=1 λ
i
. The corresponding

families of separable potentials (64) for both systems are related by

V
(k)

= (−1)n−1 Ṽ (n−k−1) or Ṽ (k)
= (−1)n−1 V

(n−k−1)
for all r ∈ Z.

It is known that the metric

G = diag

(
f (λ

1
)

∆1
, . . . ,

f (λ
n
)

∆n

)

is of constant curvature if and only if f (λ) =
∑n+1

k=0 ckλ
k

for some constants ck . From (71) it follows immediately
that the equivalent metric

G̃ = diag

(
f̃ (̃λ1)

∆̃1
, . . . ,

f̃ (̃λn)

∆̃n

)
is also of constant curvature, as in this case

f̃ (̃λ) = (−1)n−1 f (̃λ−1)̃λn+1
= (−1)n−1

n+1∑
k=0

ck λ̃
n−k+1

= (−1)n−1
n+1∑
k=0

cn−k+1̃λ
k .

6. Example: Flat bi-cofactor systems geodesically equivalent to Henon–Heiles system

Let us illustrate the ideas of this paper on the example of the integrable case of the Henon–Heiles system. It has
the potential-cofactor form (22):

d2q

dt2 = −∇V = −
(
cof J

)−1
∇W = −

3(q1)2
+

1
2

(
q2
)2

q1q2

 (72)

with G = I (so that Γ i
jk = 0 and coordinates q are Euclidean) and with the JG-tensor J of the form (6)

J =

 −q1
−

1
2

q2

−
1
2

q2 0

 .

The potentials V and W are

V (q) =

(
q1
)3

+
1
2

q1
(

q2
)2

, W (q) =
1
4

(
q1q2

)2
+

1
16

(
q2
)4

.

The system (72) has the quasi-bi-Hamiltonian representation (29)

d
dt

(
q
p

)
= Π cdH =

1

det(J)
Π nc(J)dF, (73)

with Hamiltonians H r of the form (34). Explicitly:

H1 = H =
1
2

(
p1
)2

+
1
2

(
p2
)2

+ V (q), H2 = F =
1
2

q2 p1 p2 −
1
2

q1(p2)
2
+ W (q).

The noncanonical Poisson operator Π nc reads explicitly as

Π nc(J) =

(
0 J

−J
T Ω

)
with Ω =

 0 −
1
2

p2

1
2

p2 0

 .
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The system (73) separates in variables (λ, µ) that can be found from the characteristic Eq. (66) and are given by

q1
= −(λ

1
+ λ

2
), q2

= 2

√
−λ

1
λ

2

p1 = −

(
λ

1
µ1 − λ

2
µ2

λ
1
− λ

2

)
, p2 =

√
−λ

1
λ

2

(
µ1 − µ2

λ
1
− λ

2

)
while the separation curve (69) generating Hamiltonians H r is

H1λ − H2 =
1
2
λµ2

− λ
4
. (74)

Let us now take another, arbitrary JG-tensor J3. Since the metric G = I in variables (q1, q2) the most general form
of J3 is (6) which reads now as

J3 =

 m
(

q1
)2

+ 2β1q1
+ γ 11 mq1q2

+ β1q2
+ β2q1

+ γ 12

mq1q2
+ β1q2

+ β2q1
+ γ 12 m

(
q2
)2

+ 2β2q2
+ γ 22

 (75)

with 6 arbitrary constants m, βi , γ
i j

= γ j i . Using Proposition 6 (with J1 = I and J2 = J) we see that in a new
independent variable defined by

dt3 =
dt

det (J3)

our potential-cofactor system (72) attains the bi-cofactor form (21) with (Γ (3))i
jk being Christoffel symbols of the

metric G3 = (det J3) J3G. They can be obtained from (10) which reads now (since Γ i
jk = 0)

(Γ (3))i
jk = −

1
2 det J3

(
δi

j
∂ (det J3)

∂qk
+ δi

k
∂ (det J3)

∂q j

)
.

It is important to stress that for all the choices of J3 the obtained system has on Q exactly the same trajectories as
Henon–Heiles system, only traversed with different speed. Moreover, the metric G3 is of constant curvature since it
is geodesically equivalent to the flat metric G = I [18].

Among all possible choices of the deforming tensor J3 there is only one that leads to a new potential-cofactor

system, namely J3 = J. This choice leads to cofactor-potential system (23) with J̃ = J
−1

and with the metric
G̃ =

(
det J

)
J G. The metric G̃ is flat since the deforming tensor J3 = J satisfies the conditions (50) and (55).

Explicitly, we have

J̃ = J
−1

=
4(

q̃2
)2
 0 −

1
2

q̃2

−
1
2

q̃2 q̃1

 , G̃ =
1
4

(
q̃2
)2

 q̃1 1
2

q̃2

1
2

q̃2 0


(where of course q i

= q̃ i ). This system has the quasi-bi-Hamiltonian form (32) with the Hamiltonians as in (38)
(H̃1 = H2 and H̃2 = H1) where the new momenta p̃ are related with the old momenta through the map (41) and read
explicitly as

p1 = −q̃1 p̃1 −
1
2

q̃2 p̃2, p2 = −
1
2

q̃2 p̃1.

Our new system separates in variables (̃λ, µ̃) that can be found from the characteristic Eq. (67) and are given by

q̃1
= −

(
1

λ̃1
+

1

λ̃2

)
, q̃2

=
2√

−̃λ1̃λ2

p̃1 = −
λ̃1̃λ2

λ̃1 − λ̃2

(̃
λ1µ̃1 − λ̃2µ̃2

)
, p̃2 = −

√
−̃λ1̃λ2

λ̃1 − λ̃2

((̃
λ1
)2

µ̃1 −

(̃
λ2
)2

µ̃2

)
.
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Our system can be obtained from the separation curve of the form (70) that explicitly reads as

H̃1̃λ − H̃2 = −
1
2
λ̃2µ̃2

+ λ̃−3

and can also be obtained from the separation curve (74) by the transformation (71). Let us now introduce a new
coordinates (r1, r2) on Q defined through

q̃1
= −2

r1

r2 , q̃2
=

4

r2 , (76)

(see [21]). In (r1, r2) the metric G̃ attains the antidiagonal form

G̃(r) =

(
0 1
1 0

)
(77)

(so that (r1, r2) are flat coordinates for G̃ and (Γ̃ (r))i
jk = 0) while the JG̃-tensor J̃ becomes

J̃(r) =
1
4

 r1r2
(

r1
)2

+ 4(
r2
)2

r1r2

 .

Our cofactor-potential system (geodesically equivalent to (72)) attains in variables (r1, r2) the flat Newton form

d2

d̃t2

(̃
r1

r̃2

)
= −

(
cof J̃(r)

)−1
∇̃ Ṽ2 = −∇̃ Ṽ1 =

(
2

r2

)5
2

((
r1
)2

+ 1
)

−r1r2

 (78)

with potentials

Ṽ1(r) = V (r) = 16

((
r1
)2

+ 1
)

(
r2
)4 , Ṽ2(r) = W (r) = −8

((
r1
)2

+ 2
)

r1(
r2
)3 ,

while the corresponding Hamiltonians are

H̃1(r, s) = H2(r, s) = s1s2 + Ṽ1(r),

H̃2(r, s) = H1(r, s) =

(
1
8

(
r1
)2

+
1
2

)
s2

1 −
1
4r1r2s1s2 +

1
8

(
r2
)2

s2
2 + Ṽ2(r),

where the momenta (s1, s2) are obtained from the point transformation (76) and are

p̃1 = −
2

r2 s1, p̃2 = 2
r1(
r2
)2 s1 −

4(
r2
)2 s2.

Let us finally make another choice of the deforming tensor J3, namely m = 0, γ 22
= a, β2

= b 6= 0 and
β1

= γ 11
= γ 12

= 0 so that

J3 =

(
0 bq1

bq1 2bq2
+ a

)
, G3 = (det J3) J3G =

(
0 −b3(q1)3

−b3(q1)3
−b2(q1)2(2bq2

+ a)

)
.

The metric G3 is again flat since the deforming tensor J3 satisfies the conditions (50) and (55). The respective JG3 -
tensors for the related bi-cofactor system (19) are

J1 = J−1
3 =

1

bq1

−
2bq2

+ a

bq1 1

1 0

 , J2 = JJ−1
3 =

1

bq1


2bq2

+ a

b
−

1
2

q2
−q1

1
2

q2(2bq2
+ a)

bq1 −
1
2

q2

 .
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Let us now perform a parameter-dependent change of variables to the coordinates (x1, x2) on Q defined through

x1
=

1
2

2bq2
+ a

b2q1 , x2
=

1

b2q1 .

In (x1, x2) the metric G3 attains the antidiagonal form (77), so that (x1, x2) are flat coordinates for G3 and the
JG3 -tensors J become

J1 = −b2

x1x2 (x1)2
+

1

b2

(x2)2 x1x2

 , J2 =

1
2

x1
+

1
4

ax2 1
2

ax1

x2 1
2

x1
+

1
4

ax2

 .

Hence, our two-parameter family of flat bi-cofactor systems attains in variables (x1, x2) the flat Newton form

d2

dt2
3

(
x1

x2

)
= −

(
(cof J1)

−1
∇

(3)V
)i

= −

(
(cof J2)

−1
∇

(3)W
)i

=


1
8

x1
[4(x1)2

− 4ax1x2
+ a2(x2)2

]

b4(x2)5 +
1
2

4x1
+ ax2

b6(x2)5

1
8

4(x1)2
− 4ax1x2

+ a2(x2)2

b4(x2)4 +
3

b6(x2)4

 (79)

with the potentials

V =
1
8

4(x1)2
− 4ax1x2

+ a2(x2)2

b4(x2)3 +
1

b6(x2)3 ,

W =
1

162

(ax2
− 2x1)[4(x1)2

− 4ax1x2
+ a2(x2)2

]

b4(x2)4 +
1

16
ax2

− 2x1

b6(x2)4 .

All the flat bi-cofactor systems in the two-parameter family (79) are geodesically equivalent to both the Henon–Heiles
system (72) and the Hamiltonian system (78). They also belong to the whole family of such systems generated by
(75).

Acknowledgements

The authors were partially supported by Swedish Research Council grant no. VR 2006-7359 and MNiSW research
grant N202 4049 33.

References

[1] E. Sklyanin, Separation of variables: New trends, Prog. Theor. Phys. Suppl. 118 (1995) 35.
[2] M. Błaszak, On separability of bi-Hamiltonian chain with degenerated Poisson structures, J. Math. Phys. 39 (1998) 3213.
[3] A. Ibort, F. Magri, G. Marmo, Bihamiltonian structures and Stäckel separability, J. Geom. Phys. 33 (2000) 210.
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